Affiliation:
1. Department of Plant Pathology and Microbiology, National Taiwan University , Taipei City 10617, Taiwan
Abstract
Abstract
The plant microbiome and plant-associated bacteria are known to support plant health, but there are limited studies on seed and seedling microbiome to reveal how seed-associated bacteria may confer disease resistance. In this study, the application of antibiotics on soybean seedlings indicated that seed-associated bacteria were involved in the seed rot resistance against a soil-borne pathogen Calonectria ilicicola, but this resistance cannot be carried to withstand root rot. Using PacBio 16S rRNA gene full-length sequencing and microbiome analyses, 14 amplicon sequence variants (ASVs) including 2 ASVs matching to Bacillus altitudinis were found to be more abundant in the four most resistant varieties versus the four most susceptible varieties. Culture-dependent isolation obtained two B. altitudinis isolates that both exhibit antagonistic capability against six fungal pathogens. Application of B. altitudinis on the most resistant and susceptible soybean varieties revealed different colonization compatibility, and the seed rot resistance was restored in the five varieties showing higher bacterial colonization. Moreover, quantitative PCR confirmed the persistence of B. altitudinis on apical shoots till 21 days post-inoculation (dpi), but 9 dpi on roots of the resistant variety TN5. As for the susceptible variety HC, the persistence of B. altitudinis was only detected before 6 dpi on both shoots and roots. The short-term colonization of B. altitudinis on roots may explain the absence of root rot resistance. Collectively, this study advances the insight of B. altitudinis conferring soybean seed rot resistance and highlights the importance of considering bacterial compatibility with plant varieties and colonization persistence on plant tissues.
Funder
Ministry of Agriculture
Ministry of Education, Taiwan
Publisher
Oxford University Press (OUP)