Ubiquitination at the lysine 27 residue of the Parkin ubiquitin-like domain is suggestive of a new mechanism of Parkin activation

Author:

Liu Jun-Yi1,Inoshita Tsuyoshi2,Shiba-Fukushima Kahori3,Yoshida Shigeharu45,Ogata Kosuke45ORCID,Ishihama Yasushi45ORCID,Imai Yuzuru16ORCID,Hattori Nobutaka1236

Affiliation:

1. Department of Neurology, Juntendo University Graduate School of Medicine , Tokyo 113-8421, Japan

2. Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine , Tokyo 113-8421, Japan

3. Department of Drug Development for Parkinson’s Disease, Juntendo University Graduate School of Medicine , Tokyo 113-8421, Japan

4. Department of Molecular and Cellular BioAnalysis , Graduate School of Pharmaceutical Sciences, , Kyoto 606-8501, Japan

5. Kyoto University , Graduate School of Pharmaceutical Sciences, , Kyoto 606-8501, Japan

6. Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine , Tokyo 113-8421, Japan

Abstract

Abstract The mitochondrial kinase PTEN-induced kinase 1 (PINK1) and cytosolic ubiquitin ligase (E3) Parkin/PRKN are involved in mitochondrial quality control responses. PINK1 phosphorylates ubiquitin and the Parkin ubiquitin-like (Ubl) domain at serine 65 and promotes Parkin activation and translocation to damaged mitochondria. Upon Parkin activation, the Ubl domain is ubiquitinated at lysine (K) 27 and K48 residues. However, the contribution of K27/K48 ubiquitination toward Parkin activity remains unclear. In this study, ubiquitination of K56 (corresponding to K27 in the human), K77 (K48 in the human) or both was blocked by generating Drosophila Parkin (dParkin) mutants to examine the effects of Parkin Ubl domain ubiquitination on Parkin activation in Drosophila. The dParkin, in which K56 was replaced with arginine (dParkin K56R), rescued pupal lethality in flies by co-expression with PINK1, whereas dParkin K77R could not. The dParkin K56R exhibited reduced abilities of mitochondrial fragmentation and motility arrest, which are mediated by degrading Parkin E3 substrates Mitofusin and Miro, respectively. Pathogenic dParkin K56N, unlike dParkin K56R, destabilized the protein, suggesting that not only was dParkin K56N non-ubiquitin-modified at K56, but also the structure of the Ubl domain for activation was largely affected. Ubiquitin attached to K27 of the Ubl domain during PINK1-mediated Parkin activation was likely to be phosphorylated because human Parkin K27R weakened Parkin self-binding and activation in trans. Therefore, our findings suggest a new mechanism of Parkin activation, where an activation complex is formed through phospho-ubiquitin attachment on the K27 residue of the Parkin Ubl domain.

Funder

Japan Society for the Promotion of Science

Takeda Science Foundation

Otsuka Pharmaceutical

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3