Affiliation:
1. Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta , 116 St. and 85 Ave. Edmonton, Alberta T6G 2R3 , Canada
Abstract
Abstract
Fecal microbiota transplantation (FMT) is an emerging technique for modulating the pig microbiota, however, donor variability is one of the major reasons for inconsistent outcomes across studies. Cultured microbial communities may address some limitations of FMT; however, no study has tested cultured microbial communities as inocula in pigs. This pilot study compared the effects of microbiota transplants derived from sow feces to cultured mixed microbial community (MMC) following weaning. Control, FMT4X, and MMC4X were applied four times, while treatment FMT1X was administered once (n = 12/group). On postnatal day 48, microbial composition was modestly altered in pigs receiving FMT in comparison with Control (Adonis, P = .003), mainly attributed to reduced inter-animal variations in pigs receiving FMT4X (Betadispersion, P = .018). Pigs receiving FMT or MMC had consistently enriched ASVs assigned to genera Dialister and Alloprevotella. Microbial transplantation increased propionate production in the cecum. MMC4X piglets showed a trend of higher acetate and isoleucine compared to Control. A consistent enrichment of metabolites from amino acid metabolism in pigs that received microbial transplantation coincided with enhanced aminoacyl-tRNA biosynthesis pathway. No differences were observed among treatment groups for body weight or cytokine/chemokine profiles. Overall, FMT and MMC exerted similar effects on gut microbiota composition and metabolite production.
Funder
Alberta Livestock and Meat Agency
Natural Sciences and Engineering Research Council of Canada
Canada Research Chairs
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Ecology,Microbiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献