Novel ecological implications of non-toxic Microcystis towards toxic ecotype in population—promoting toxic ecotype dominance at various N levels and cooperative defense against luteolin-stress

Author:

Guo Zhonghui12,Li Jieming12ORCID,Luo Di12,Zhang Mingxia12

Affiliation:

1. College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193 , China

2. Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University , Beijing 100193 , China

Abstract

Abstract Microcystin (MC)-producing (MC+) and MC-free (MC−) Microcystis always co-exist and interact during Microcystis-dominated cyanobacterial blooms (MCBs), where MC+Microcystis abundance and extracellular MC-content (EMC) determine the hazard extent of MCBs. The current study elucidated intraspecific interaction between MC+ and MC−Microcystis at various nitrogen (N) levels (0.5–50 mg/L) and how such N-mediated interaction impacted algicidal and EMC-inhibiting effect of luteolin, a natural bioalgicide. Conclusively, MC+ and MC−Microcystis were inhibited mutually at N-limitation (0.5 mg/L), which enhanced the algicidal and EMC-inhibiting effects of luteolin. However, at N-sufficiency (5–50 mg/L), MC−Microcystis promoted MC+ ecotype growth and dominance, and such intraspecific interaction induced the cooperative defense of two ecotypes, weakening luteolin's algicidal and EMC-inhibiting effects. Mechanism analyses further revealed that MC+Microcystis in luteolin-stress co-culture secreted exopolymeric substances (EPSs) for self-protection against luteolin-stress and also released more EMC to induce EPS-production by MC−Microcystis as protectants, thus enhancing their luteolin-resistance and promoting their growth. This study provided novel ecological implications of MC−Microcystis toward MC+ ecotype in terms of assisting the dominant establishment of MC+Microcystis and cooperative defense with MC+ ecotype against luteolin, which guided the application of bioalgicide (i.e. luteolin) for MCBs and MCs pollution mitigation in different eutrophication-degree waters.

Funder

National Natural Scientific Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3