Dissolved organic phosphorus bond-class utilization by Synechococcus

Author:

Waggoner Emily M1ORCID,Djaoudi Kahina1ORCID,Diaz Julia M2ORCID,Duhamel Solange1ORCID

Affiliation:

1. Department of Molecular and Cellular Biology, University of Arizona , 1007 East Lowell Street, Tucson, Arizona, AZ 85721 , United States

2. Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego , La Jolla, CA 92093 , United States

Abstract

Abstract Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus–carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5′-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5′-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus–carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5′-triphosphate, and lastly adenosine 5′-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains’ exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5′-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.

Funder

National Science Foundation

Simons Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3