Nitrogen to phosphorus ratio shapes the bacterial communities involved in cellulose decomposition and copper contamination alters their stoichiometric demands

Author:

Wang Ziming1ORCID,Cébron Aurélie2ORCID,Baillard Vincent1,Danger Michael13

Affiliation:

1. Université de Lorraine , CNRS, LIEC, F-57000, Metz, France

2. Université de Lorraine , CNRS, LIEC, F-54000, Nancy, France

3. Institut Universitaire de France (IUF) , F-75000, Paris, France

Abstract

Abstract All living organisms theoretically have an optimal stoichiometric nitrogen: phosphorus (N: P) ratio, below and beyond which their growth is affected, but data remain scarce for microbial decomposers. Here, we evaluated optimal N: P ratios of microbial communities involved in cellulose decomposition and assessed their stability when exposed to copper Cu(II). We hypothesized that (1) cellulose decomposition is maximized for an optimal N: P ratio; (2) copper exposure reduces cellulose decomposition and (3) increases microbial optimal N: P ratio; and (4) N: P ratio and copper modify the structure of microbial decomposer communities. We measured cellulose disc decomposition by a natural inoculum in microcosms exposed to a gradient of N: P ratios at three copper concentrations (0, 1 and 15 µM). Bacteria were most probably the main decomposers. Without copper, cellulose decomposition was maximized at an N: P molar ratio of 4.7. Contrary to expectations, at high copper concentration, the optimal N: P ratio (2.8) and the range of N: P ratios allowing decomposition were significantly reduced and accompanied by a reduction of bacterial diversity. Copper contamination led to the development of tolerant taxa probably less efficient in decomposing cellulose. Our results shed new light on the understanding of multiple stressor effects on microbial decomposition in an increasingly stoichiometrically imbalanced world.

Funder

French National Research Agency

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3