Effects of modified biochars on the shifts of short-chain fatty acid profile, iron reduction, and bacterial community in paddy soil

Author:

Liu Qian12,Zhong Linrui12,Hu Yingju12,Fu Leiling12,Hu Xingxin12,Gu Yujing12,Xie Qingqing12,Liang Fangyi12,Liu Qi12,Lu Yue12ORCID

Affiliation:

1. College of Environmental Science and Engineering, Hunan University , Changsha 410082, Hunan, China

2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education, Changsha 410082, Hunan, China

Abstract

Abstract Biochar is well known as an effective means for soil amendment, and modification on biochar with different methods could improve the benefits for environmental remediation. In this study, two modified biochars were generated with nitric acid (NBC) and hydrogen peroxide (OBC) pretreatment, and a control biochar was produced after washing with deionized water (WBC). The dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in rice paddy soil amended with different biochars or without adding biochar (CK) were studied during 70 days of anaerobic incubation. Compared to CK treatment, the accumulation of SCFAs was largely inhibited by the amendment of biochars. Besides, OBC and WBC increased the accumulation of Fe(II) at the initial stage of incubation. Via 16S rRNA gene sequencing, modified biochars caused significant response of bacterial community in comparison to WBC at Day 0–1, and three biochars favored bacterial α-diversity in the paddy soil at the end of the incubation. Interestingly, positive and negative correlations between NBC and several bacteria taxa (e.g. Geobacter, Fonticella and Clostridium) were observed. The study revealed that modified biochars had significant effects on the shifts of SCFAs, Fe(III) reduction and bacterial diversity, which provides fundamental information for future application of modified biochars in rice cropping ecosystem.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Ecology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3