Classification of Aggressive Behaviors Based on sEMG Feature Extraction and Machine Learning Algorithm

Author:

Kim Youngjun1,David Uchechukuwu1,Noh Yeonsik1

Affiliation:

1. University of Massachusetts Amherst, Amherst, Massachusetts, United States

Abstract

Abstract New surface electromyography (sEMG) feature extraction approach combined with Empirical Mode Decomposition (EMD) and Dispersion Entropy (DisEn) is proposed for classifying aggressive and normal behaviors from sEMG data. In this study, we used the sEMG physical action dataset from the UC Irvine Machine Learning repository. The raw sEMG was decomposed with EMD to obtain a set of Intrinsic Mode Functions (IMF). The IMF, which includes the most discriminant feature for each action, was selected based on the analysis by Hibert Transform (HT) in the time-frequency domain. Next, the DisEn of the selected IMF was calculated as a corresponding feature. Finally, the DisEn value was tested using five different classifiers, such as LDA, Quadratic DA, k-NN, SVM, and Extreme Learning Machine (ELM) for the classification task. Among these ML algorithms, we achieved classification accuracy, sensitivity, and specificity with ELM as 98.44%, 100%, and 96.72%, respectively.

Publisher

Oxford University Press (OUP)

Subject

Life-span and Life-course Studies,Health Professions (miscellaneous),Health (social science)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Based Classification of Normal and Aggressive Behaviors using EMG Signals;2023 Innovations in Intelligent Systems and Applications Conference (ASYU);2023-10-11

2. EMG Signal Decomposition Methods for Physical Actions: A Comparative Analysis;2023 1st International Conference on Circuits, Power and Intelligent Systems (CCPIS);2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3