Biochemical Basis for Redox Regulation of Chloroplast-Localized Phosphofructokinase from Arabidopsis thaliana

Author:

Yoshida Keisuke1ORCID,Hisabori Toru1ORCID

Affiliation:

1. Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1-8, Midori-ku, Yokohama, 226-8503 Japan

Abstract

Abstract Various proteins in plant chloroplasts are subject to thiol-based redox regulation, allowing light-responsive control of chloroplast functions. Most redox-regulated proteins are known to be reductively activated in the light in a thioredoxin (Trx)-dependent manner, but its regulatory network remains incompletely understood. Using a biochemical procedure, we here show that a specific form of phosphofructokinase (PFK) is a novel redox-regulated protein whose activity is suppressed upon reduction. PFK is a key enzyme in the glycolytic pathway. In Arabidopsis thaliana, PFK5 is targeted to chloroplasts and uniquely contains an insertion sequence harboring two Cys residues (Cys152 and Cys157) in the N-terminal region. Redox shift assays using a thiol-modifying reagent indicated that PFK5 is efficiently reduced by a specific type of Trx, namely, Trx-f. PFK5 enzyme activity was lowered with the Trx-f-dependent reduction. PFK5 redox regulation was bidirectional; PFK5 was also oxidized and activated by the recently identified Trx-like2/2-Cys peroxiredoxin pathway. Mass spectrometry-based peptide mapping analysis revealed that Cys152 and Cys157 are critical for the intramolecular disulfide bond formation in PFK5. The involvement of Cys152 and Cys157 in PFK5 redox regulation was further supported by a site-directed mutagenesis study. PFK5 catalyzes the reverse reaction of fructose 1,6-bisphosphatase (FBPase), which is reduced and activated specifically by Trx-f. Our data suggest that PFK5 redox regulation, together with that of FBPase, constitutes a checkpoint for switching light/dark metabolism in chloroplasts.

Funder

The Japan Society for the Promotion of Science (JSPS) KAKENHI

Sumitomo Foundation

Yoshinori Ohsumi Fund for Fundamental Research

Tokyo Tech Challenging Research Award

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3