Protein–lipid Association in Lizard Chemical Signals

Author:

Mangiacotti M1ORCID,Baeckens S23ORCID,Fumagalli M4,Martín J5,Scali S6ORCID,Sacchi R1ORCID

Affiliation:

1. Department of Earth and Environmental Sciences, University of Pavia , Via Taramelli 24, 27100 Pavia , Italy

2. Functional Morphology Lab, Department of Biology, University of Antwerp , Universiteitsplein 1, 2610 Wilrijk , Belgium

3. Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University , 9000 Gent , Belgium

4. Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia , Via Ferrata 9, 27100 Pavia , Italy

5. Departamento de Ecología Evolutiva , Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, E-28006 Madrid , Spain

6. Sezione Erpetologia, Museo di Storia Naturale di Milano , Corso Venezia 55, IT-20121 Milano , Italy

Abstract

Synopsis Chemical communication in terrestrial vertebrates is often built on complex blends, where semiochemical and structural compounds may form an integrated functional unit. In lizards, many species have specialized epidermal glands whose secretions are waxy, homogeneous blends of lipids and proteins, both active in communication. The intimate co-occurrence of such compounds allows us to hypothesize that they should undergo a certain degree of covariation, considering both their semiochemical role and the support-to-lipid function hypothesized for the protein fraction. In order to assess the occurrence and level of protein–lipid covariation, we compared the composition and complexity of the two fractions in the femoral gland secretions of 36 lizard species, combining phylogenetically-informed analysis with tandem mass spectrometry. We found the composition and complexity of the two fractions to be strongly correlated. The composition of the protein fraction was mostly influenced by the relative proportion of cholestanol, provitamin D3, stigmasterol, and tocopherol, while the complexity of the protein pattern increased with that of lipids. Additionally, two identified proteins (carbonic anhydrase and protein disulfide isomerase) increased their concentration as provitamin D3 became more abundant. Although our approach does not allow us to decrypt the functional relations between the proteinaceous and lipid components, nor under the semiochemical or structural hypothesis, the finding that the proteins involved in this association were enzymes opens up to new perspectives about protein role: They may confer dynamic properties to the blend, making it able to compensate predictable variation of the environmental conditions. This may expand the view about proteins in the support-to-lipid hypothesis, from being a passive and inert component of the secretions to become an active and dynamic one, thus providing cues for future research.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3