Ecophysiology with barley eceriferum (cer) mutants: the effects of humidity and wax crystal structure on yield and vegetative parameters

Author:

von Wettstein-Knowles Penny1

Affiliation:

1. Department of Biology, University of Copenhagen, Ole Maaloees Vej, Copenhagen N, Denmark

Abstract

Abstract Background and Aims In addition to preventing water loss, plant cuticles must also regulate nutrient loss via leaching. The eceriferum mutants in Hordeum vulgare (barley) potentially influence these functions by altering epicuticular wax structure and composition. Methods Cultivar ‘Bonus’ and five of its cer mutants were grown under optimal conditions for vegetative growth and maturation, and nine traits were measured. Nutrient and water amounts going through the soil and the amount of simulated rain as deionized water, affecting phyllosphere humidity, delivered during either the vegetative or maturation phase, were varied. Cer leaf genes and three wilty (wlt) mutations were characterized for reaction to toluidine blue and the rate of non-stomatal water loss. Key Results Vegetative phase rain on ‘Bonus’ significantly decreased kernel weight and numbers by 15–30 %, while in cer.j59 and .c36 decreases of up to 42 % occurred. Maturation phase findings corroborated those from the vegetative phase. Significant pleiotropic effects were identified: cer.j59 decreased culm and spike length and 1000-kernel weight, .c36 decreased kernel number and weight, .i16 decreased spike length and .e8 increased culm height. Excepting Cer.zv and .ym mutations, none of the other 27 Cer leaf genes or wlt mutations played significant roles, if any, in preventing water loss. Cer.zv and .ym mutants lost non-stomatal water 13.5 times faster than those of Cer.j, .yi, .ys and .zp and 18.3 times faster than those of four cultivars and the mutants tested here. Conclusions Using yield to measure the net effect of phyllosphere humidity and wax crystal structure revealed that the former is far more important than the latter. The amenable experimental setup described here can be used to delve deeper. Significant pleiotropic effects were identified for mutations in four Cer genes, of which one is known to participate in wax biosynthesis. Twenty-seven Cer leaf genes and three wlt mutations have little if any effect on water loss.

Funder

Danish Natural Science and Swedish Research Councils

Carlsberg Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Plant Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3