A chromosome-level genome assembly of the orange wheat blossom midge, Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) provides insights into the evolution of a detoxification system

Author:

Gong Zhongjun1ORCID,Li Tong1,Miao Jin1ORCID,Duan Yun1,Jiang Yueli1,Li Huiling1,Guo Pei1,Wang Xueqin1,Zhang Jing1,Wu Yuqing1

Affiliation:

1. Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China

Abstract

Abstract The orange wheat blossom midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae), an economically important pest, has caused serious yield losses in most wheat-growing areas worldwide in the past half-century. A high-quality chromosome-level genome for S. mosellana was assembled using PacBio long read, Illumina short read, and Hi-C sequencing technologies. The final genome assembly was 180.69 Mb, with contig and scaffold N50 sizes of 998.71 kb and 44.56 Mb, respectively. Hi-C scaffolding reliably anchored 4 pseudochromosomes, accounting for 99.67% of the assembled genome. In total, 12,269 protein-coding genes were predicted, of which 91% were functionally annotated. Phylogenetic analysis indicated that S. mosellana and its close relative, the swede midge Contarinia nasturtii, diverged about 32.7 MYA. The S. mosellana genome showed high chromosomal synteny with the genome of Drosophila melanogaster and Anopheles gambiae. The key gene families involved in the detoxification of plant secondary chemistry were analyzed. The high-quality S. mosellana genome data will provide an invaluable resource for research in a broad range of areas, including the biology, ecology, genetics, and evolution of midges, as well as insect–plant interactions and coevolution.

Funder

China Agriculture Research System of MOF and MARA

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3