Polymorphism and the Red Queen: the selective maintenance of allelic variation in a deteriorating environment

Author:

Spencer Hamish G1ORCID,Walter Callum B1

Affiliation:

1. Department of Zoology, University of Otago , Dunedin 9054 , New Zealand

Abstract

Abstract Although allelic variation is ubiquitous in natural populations, our theoretical models are poor at predicting the existence and properties of these observed polymorphisms. In this study, inspired by Van Valen's Red Queen hypothesis, we modeled the effect of viability selection in a deteriorating environment on the properties of allelic variation in populations subject to recurrent mutation. In Monte Carlo simulations, we found that levels of polymorphism consistently built up over time. We censused the simulated populations after 10,000 generations of mutation and selection, revealing that, compared with models assuming a constant environment, the mean number of alleles was greater, as was the range of allele numbers. These results were qualitatively robust to the addition of genetic drift and to the relaxation of the assumption that the viabilities of phenogenotypes containing a new mutation are independent of each other (i.e. incorporating a model of generalized dominance). The broad range of allele numbers realized in the simulated populations—from monomorphisms to highly polymorphic populations—more closely corresponds to the observed range from numerous surveys of natural populations than previously found in theoretical studies. This match suggests that, contrary to the views of some writers, selection may actively maintain genetic variation in natural populations, particularly if the selective environment is gradually becoming harsher. Our simulations also generated many populations with heterozygote advantage, a mismatch with real data that implies that this selective property must arise extremely rarely in natural populations.

Funder

Royal Society of New Zealand Te Apārangi James Cook Research Fellowship

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3