The genome of the oomycetePeronosclerospora sorghi, a cosmopolitan pathogen of maize and sorghum, is inflated with dispersed pseudogenes

Author:

Fletcher Kyle1ORCID,Martin Frank2,Isakeit Thomas3,Cavanaugh Keri1,Magill Clint3,Michelmore Richard14ORCID

Affiliation:

1. The Genome Center, University of California , Davis, CA 95616 , USA

2. U.S. Department of Agriculture–Agriculture Research Service , Salinas, CA, 93905 , USA

3. Department of Plant Pathology and Microbiology, Texas A&M University, College Station , TX 77843 , USA

4. Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California , Davis, CA 95616 , USA

Abstract

AbstractSeveral species in the oomycete genus Peronosclerospora cause downy mildew on maize and can result in significant yield losses in Asia. Bio-surveillance of these pathogens is a high priority to prevent epidemics on maize in the United States and consequent damage to the US economy. The unresolved taxonomy and dearth of molecular resources for Peronosclerospora spp. hinder these efforts. P. sorghi is a pathogen of sorghum and maize with a global distribution, for which limited diversity has been detected in the southern USA. We characterized the genome, transcriptome, and mitogenome of an isolate, representing the US pathotype 6. The highly homozygous genome was assembled using 10× Genomics linked reads and scaffolded using Hi-C into 13 chromosomes. The total assembled length was 303.2 Mb, larger than any other oomycete previously assembled. The mitogenome was 38 kb, similar in size to other oomycetes, although it had a unique gene order. Nearly 20,000 genes were annotated in the nuclear genome, more than described for other downy mildew causing oomycetes. The 13 chromosomes of P. sorghi were highly syntenic with the 17 chromosomes of Peronospora effusa with conserved centromeric regions and distinct chromosomal fusions. The increased assembly size and gene count of P. sorghi is due to extensive retrotransposition, resulting in putative pseudogenization. Ancestral genes had higher transcript abundance and were enriched for differential expression. This study provides foundational resources for analysis of Peronosclerospora and comparisons to other oomycete genera. Further genomic studies of global Peronosclerospora spp. will determine the suitability of the mitogenome, ancestral genes, and putative pseudogenes for marker development and taxonomic relationships.

Funder

USDA

APHIS

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3