Extracellular matrix regulation of stress response genes during larval development in Caenorhabditis elegans

Author:

Chandler Luke M1,Choe Keith P1

Affiliation:

1. Department of Biology and Genetics Institute, University of Florida , Gainesville, FL 32611, USA

Abstract

Abstract Mutation or loss of 6 extracellular matrix collagen genes disrupts annular furrows in adult C. elegans cuticles, causes a wide “Dumpy” body morphology, and activates osmotic, detoxification, and antimicrobial defense genes. High environmental osmolarity reduces internal turgor pressure, physically distorts the epidermis, and activates the same stress responses. Collagen gene mutations that cause Dumpy without furrow disruption do not activate stress responses. These results are consistent with an extracellular damage sensor associated with furrows in the adult cuticle that regulates environmental stress responses in adjacent cells. Several cuticle characteristics change between molts, but all stages have annular furrows and express furrow collagen genes. We compared body shape, furrow organization imaged with differential interference contrast microscopy, and stress response gene expression in furrow collagen gene mutants at all postembryonic stages. We find that most body shape and furrow disorganization phenotypes start at the L3 stage and increase in severity with each molt afterwards. Stress response genes were induced the strongest in adults, correlating with the greatest Dumpy and furrow phenotypes. Although weaker than in adults, osmolyte transporter gene hmit-1.1 and antimicrobial gene nlp-29 were also induced in some early larvae that had weak or undetectable cuticle phenotypes. Our data are consistent with progressive cuticle phenotypes in which each new cuticle is at least partially directed by organization of the former cuticle. Gene expression and cuticle data support the role of furrow disruption as a signal in L4 larvae and adults, but also suggest a role for other cuticle organization or epidermal cell effects in early larvae.

Funder

National Institutes of Health Office of Research Infrastructure Programs

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3