Nematode-resistance loci in upland cotton genomes are associated with structural differences

Author:

Cohen Zachary P1ORCID,Perkin Lindsey C1,Wagner Tanya A1,Liu Jinggao1ORCID,Bell Alois A1,Arick Mark A2,Grover Corrinne E3ORCID,Yu John Z4,Udall Joshua A4ORCID,Suh Charles P C1

Affiliation:

1. USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit , College Station, TX 77845 , USA

2. Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University , Mississippi State, MS 39762 , USA

3. EEOB Department, Iowa State University , Ames, IA 50011 , USA

4. USDA Agricultural Research Service, Crop Germplasm Research Unit , College Station, TX 77845 , USA

Abstract

Abstract Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum L., and continue to be a major threat to cotton fiber production in semiarid regions of the Southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (Gossypium barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode-tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber-producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole-genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3