The genome of the Arctic snow alga Limnomonas spitsbergensis (Chlamydomonadales)

Author:

Hulatt Chris J12ORCID,Suzuki Hirono1ORCID,Détain Alexandre1ORCID,Wijffels René H13,Leya Thomas4,Posewitz Matthew C2

Affiliation:

1. Faculty of Biosciences and Aquaculture, Nord University, Mørkvedbukta Research Station , 8020 Bodø , Norway

2. Department of Chemistry, Colorado School of Mines , Golden, CO, 80401 , USA

3. Bioprocess Engineering, AlgaePARC, Wageningen University , Wageningen, 6700 AA , The Netherlands

4. Fraunhofer Institute for Cell Therapy and Immunology IZI, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research and Biobank CCCryo , 14476 Potsdam-Golm , Germany

Abstract

Abstract Snow algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High-quality snow algae genomes are needed for studies on their unique physiology, adaptive mechanisms, and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight. Here, we assembled and annotated the genome of Limnomonas spitsbergensis, a cryophilic biciliate green alga originally isolated from melting snow on Svalbard, in the Arctic. The L. spitsbergensis genome assembly is based primarily on the use of PacBio long reads and secondly Illumina short reads, with an assembly size of 260.248 Mb in 124 contigs. A combination of 3 alternative annotation strategies was used including protein homology, RNA-seq evidence, and PacBio full-length transcript isoforms. The best merged set of annotations identified 18,277 protein-coding genes, which were 95.2% complete based on Benchmarking Universal Single-Copy Orthologs analysis. We also provide the annotated mitogenome, which is a relatively large 77.942 kb circular mapping sequence containing extensive repeats. The L. spitsbergensis genome will provide a new resource for research on snow algae adaptation, behavior, and natural selection in unique, low-temperature terrestrial environments that are under threat from climate change.

Funder

Marie Skłodowska-Curie Individual Fellowship

European Union’s Horizon 2020

Posewitz lab

Colorado School of Mines

National Center for Genome Resources

UNINETT Sigma-2 Compute Infrastructure

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3