Ionic Liquid-Based electrolytes for CO2 electroreduction and CO2 electroorganic transformation

Author:

Tan Xingxing12,Sun Xiaofu12,Han Buxing123

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

2. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China

3. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China

Abstract

Abstract CO2 is an abundant and renewable C1 feedstock. Electrochemical transformation of CO2 can integrate CO2 fixation with renewable electricity storage, providing an avenue to close the anthropogenic carbon cycle. As a new type of green and chemically tailorable solvents, ionic liquids (ILs) have been proposed as the highly promising alternatives for conventional electrolytes in electrochemical CO2 conversion. This review summarizes major advances in the electrochemical transformation of CO2 into value-added carbonic fuels and chemicals in IL-based media in the past several years. Both the direct CO2 electroreduction (CO2ER) and CO2-involved electroorganic transformation (CO2EOT) are discussed, focusing on the effect of electrocatalysts, IL components, reactor configurations, and operating conditions on the catalytic activity, selectivity, and reusability. The reasons for the enhanced CO2 conversion performance by ILs are also discussed, which provides guidance for the rational design of novel IL-based electrochemical processes for CO2 conversion. Finally, the critical challenges remaining in this research area and promising directions for future research are proposed.

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3