LESION MIMIC MUTANT 1 confers basal resistance to Sclerotinia sclerotiorum in rapeseed via a salicylic acid-dependent pathway

Author:

Yu Mengna1,Fan Yonghai1,Li Xiaodong1,Chen Xingyu1,Yu Shijie1,Wei Siyu1,Li Shengting1,Chang Wei1,Qu Cunmin123,Li Jiana123,Lu Kun123ORCID

Affiliation:

1. Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University , Beibei, Chongqing 400715 , China

2. Engineering Research Center of South Upland Agriculture, Ministry of Education , Chongqing 400715 , China

3. Academy of Agricultural Sciences, Southwest University , Beibei, Chongqing 400715 , China

Abstract

Abstract Rapeseed (Brassica napus) is a major edible oilseed crop consumed worldwide. However, its yield is seriously affected by infection from the broad-spectrum non-obligate pathogen Sclerotinia sclerotiorum due to a lack of highly resistant germplasm. Here, we identified a Sclerotinia-resistant and light-dependent lesion mimic mutant from an ethyl methanesulfonate-mutagenized population of the rapeseed inbred Zhongshuang 11 (ZS11) named lesion mimic mutant 1 (lmm1). The phenotype of lmm1 is controlled by a single recessive gene, named LESION MIMIC MUTANT 1 (LMM1), which mapped onto chromosome C04 by bulked segregant analysis within a 2.71-Mb interval. Histochemical analysis indicated that H2O2 strongly accumulated and cell death occurred around the lesion mimic spots. Among 877 differentially expressed genes (DEGs) between ZS11 and lmm1 leaves, 188 DEGs were enriched in the defense response, including 95 DEGs involved in systemic acquired resistance, which is consistent with the higher salicylic acid levels in lmm1. Combining bulked segregant analysis and transcriptome analysis, we identified a significantly up-regulated gene, BnaC4.PR2, which encodes β-1,3-glucanase, as the candidate gene for LMM1. Overexpression of BnaC4.PR2 may induce a reactive oxygen species burst to trigger partial cell death and systemic acquired resistance. Our study provides a new genetic resource for S. sclerotiorum resistance as well as new insights into disease resistance breeding in B. napus.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

Talent Project of Chongqing Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3