Stress-induced deeper rooting introgression enhances wheat yield under terminal drought

Author:

Bacher Harel12ORCID,Montagu Aviad3ORCID,Herrmann Ittai1ORCID,Walia Harkamal2ORCID,Schwartz Nimrod3ORCID,Peleg Zvi1ORCID

Affiliation:

1. The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem , Rehovot 7610001 , Israel

2. Department of Agronomy and Horticulture, University of Nebraska-Lincoln , Lincoln, NE 68583 , USA

3. The Institute of Environmental Sciences, The Hebrew University of Jerusalem , Rehovot 7610001 , Israel

Abstract

Abstract Water scarcity is the primary environmental constraint affecting wheat growth and production and is increasingly exacerbated due to climatic fluctuation, which jeopardizes future food security. Most breeding efforts to improve wheat yields under drought have focused on above-ground traits. Root traits are closely associated with various drought adaptability mechanisms, but the genetic variation underlying these traits remains untapped, even though it holds tremendous potential for improving crop resilience. Here, we examined this potential by re-introducing ancestral alleles from wild emmer wheat (Triticum turgidum ssp. dicoccoides) and studied their impact on root architecture diversity under terminal drought stress. We applied an active sensing electrical resistivity tomography approach to compare a wild emmer introgression line (IL20) and its drought-sensitive recurrent parent (Svevo) under field conditions. IL20 exhibited greater root elongation under drought, which resulted in higher root water uptake from deeper soil layers. This advantage initiated at the pseudo-stem stage and increased during the transition to the reproductive stage. The increased water uptake promoted higher gas exchange rates and enhanced grain yield under drought. Overall, we show that this presumably ‘lost’ drought-induced mechanism of deeper rooting profile can serve as a breeding target to improve wheat productiveness under changing climate.

Funder

U.S. Agency for International Development Middle East Research and Cooperation

Chief Scientist of the Israeli Ministry of Agriculture and Rural Development

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3