Multi-objective particle swarm optimization with dynamic population size

Author:

Shu Xiaoli1ORCID,Liu Yanmin2,Liu Jun1,Yang Meilan3,Zhang Qian3

Affiliation:

1. School of Data Science and Information Engineering, Guizhou Minzu University , Guiyang, Guizhou 550025 , China

2. School of Mathematics, Zunyi Normal College , Zunyi, Guizhou 563002 , China

3. School of Mathematics and Statistics, Guizhou University , Guiyang, Guizhou 550025 , China

Abstract

AbstractThere are many complex multi-objective optimization problems in the real world, which are difficult to solve using traditional optimization methods. Multi-objective particle swarm optimization is one of the effective algorithms to solve such problems. This paper proposes a multi-objective particle swarm optimization with dynamic population size (D-MOPSO), which helps to compensate for the lack of convergence and diversity brought by particle swarm optimization, and makes full use of the existing resources in the search process. In D-MOPSO, population size increases or decreases depending on the resources in the archive, thereby regulating population size. On the one hand, particles are added according to local perturbations to improve particle exploration. On the other hand, the non-dominated sorting and population density are used to control the population size to prevent the excessive growth of population size. Finally, the algorithm is compared with 13 competing multi-objective optimization algorithms on four series of benchmark problems. The results show that the proposed algorithm has advantages in solving different benchmark problems.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3