Affiliation:
1. Faculty of Computers and Information, Minia University, Minia, Egypt
2. Faculty of Computer Science, Nahda University, Beni Suef, Egypt
3. University of Sharjah, Sharjah, United Arab Emirates
4. Faculty of Computers and Information, Mansoura University, Egypt
Abstract
Abstract
Despite the great efforts to find an effective way for coronavirus disease 2019 (COVID-19) prediction, the virus nature and mutation represent a critical challenge to diagnose the covered cases. However, developing a model to predict COVID-19 via chest X-ray images with accurate performance is necessary to help in early diagnosis. In this paper, a hybrid quantum-classical convolutional neural network (HQ-CNN) model using random quantum circuits as a base to detect COVID-19 patients with chest X-ray images is presented. A collection of 5445 chest X-ray images, including 1350 COVID-19, 1350 normal, 1345 viral pneumonia, and 1400 bacterial pneumonia images, were used to evaluate the HQ-CNN. The proposed HQ-CNN model has achieved higher performance with an accuracy of 98.6% and a recall of 99% on the first experiment (COVID-19 and normal cases). Besides, it obtained an accuracy of 98.2% and a recall of 99.5% on the second experiment (COVID-19 and viral pneumonia cases). Also, it obtained 98% and 98.8% for accuracy and recall, respectively, on the third dataset (COVID-19 and bacterial pneumonia cases). Lastly, it achieved accuracy and recall of 88.2% and 88.6%, respectively, on the multiclass dataset cases. Moreover, the HQ-CNN model is assessed with the statistical analysis (i.e. Cohen’s Kappa and Matthew correlation coefficients). The experimental results revealed that the proposed HQ-CNN model is able to predict the positive COVID-19 cases.
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献