Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images

Author:

Houssein Essam H1ORCID,Abohashima Zainab2,Elhoseny Mohamed34,Mohamed Waleed M1

Affiliation:

1. Faculty of Computers and Information, Minia University, Minia, Egypt

2. Faculty of Computer Science, Nahda University, Beni Suef, Egypt

3. University of Sharjah, Sharjah, United Arab Emirates

4. Faculty of Computers and Information, Mansoura University, Egypt

Abstract

Abstract Despite the great efforts to find an effective way for coronavirus disease 2019 (COVID-19) prediction, the virus nature and mutation represent a critical challenge to diagnose the covered cases. However, developing a model to predict COVID-19 via chest X-ray images with accurate performance is necessary to help in early diagnosis. In this paper, a hybrid quantum-classical convolutional neural network (HQ-CNN) model using random quantum circuits as a base to detect COVID-19 patients with chest X-ray images is presented. A collection of 5445 chest X-ray images, including 1350 COVID-19, 1350 normal, 1345 viral pneumonia, and 1400 bacterial pneumonia images, were used to evaluate the HQ-CNN. The proposed HQ-CNN model has achieved higher performance with an accuracy of 98.6% and a recall of 99% on the first experiment (COVID-19 and normal cases). Besides, it obtained an accuracy of 98.2% and a recall of 99.5% on the second experiment (COVID-19 and viral pneumonia cases). Also, it obtained 98% and 98.8% for accuracy and recall, respectively, on the third dataset (COVID-19 and bacterial pneumonia cases). Lastly, it achieved accuracy and recall of 88.2% and 88.6%, respectively, on the multiclass dataset cases. Moreover, the HQ-CNN model is assessed with the statistical analysis (i.e. Cohen’s Kappa and Matthew correlation coefficients). The experimental results revealed that the proposed HQ-CNN model is able to predict the positive COVID-19 cases.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference88 articles.

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3