Quantitative RyR1 reduction and loss of calcium sensitivity of RyR1Q1970fsX16+A4329D cause cores and loss of muscle strength

Author:

Elbaz Moran1,Ruiz Alexis1,Bachmann Christoph1,Eckhardt Jan1,Pelczar Pawel2,Venturi Elisa3,Lindsay Chris34,Wilson Abigail D3,Alhussni Ahmed3,Humberstone Thomas3,Pietrangelo Laura5,Boncompagni Simona5,Sitsapesan Rebecca3,Treves Susan16,Zorzato Francesco16

Affiliation:

1. Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland

2. Center for Transgenic Models, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland

3. Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK

4. Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK

5. Center for Research on Ageing and Translational Medicine and Department of Neuroscience, Imaging and Clinical Sciences, Università G. d’Annunzio, 66100 Chieti, Italy

6. Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy

Abstract

Abstract Recessive ryanodine receptor 1 (RYR1) mutations cause congenital myopathies including multiminicore disease (MmD), congenital fiber-type disproportion and centronuclear myopathy. We created a mouse model knocked-in for the Q1970fsX16+A4329D RYR1 mutations, which are isogenic with those identified in a severely affected child with MmD. During the first 20 weeks after birth the body weight and the spontaneous running distance of the mutant mice were 20% and 50% lower compared to wild-type littermates. Skeletal muscles from mutant mice contained ‘cores’ characterized by severe myofibrillar disorganization associated with misplacement of mitochondria. Furthermore, their muscles developed less force and had smaller electrically evoked calcium transients. Mutant RyR1 channels incorporated into lipid bilayers were less sensitive to calcium and caffeine, but no change in single-channel conductance was observed. Our results demonstrate that the phenotype of the RyR1Q1970fsX16+A4329D compound heterozygous mice recapitulates the clinical picture of multiminicore patients and provide evidence of the molecular mechanisms responsible for skeletal muscle defects.

Funder

M.I.U.R. P.R.I.N. 2015

NeRAB

Swiss Muscle Foundation (FSRMM)

OPO Stiftung

BOTNAR Stiftung

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,General Medicine

Reference37 articles.

1. Voltage sensor of excitation–contraction coupling in skeletal muscle;Rios;Physiol. Rev.,1991

2. Calcium release from the sarcoplasmic reticulum;Endo;Physiol. Rev.,1977

3. Biochemistry and biophysics of excitation–contraction coupling;Fleischer;Annu. Rev. Biophys. Biophys. Chem.,1989

4. Ca2+ signaling and muscle disease;MacLennan;Eur. J. Biochem.,2000

5. Structure and development of E-C coupling units in skeletal muscle;Franzini-Armstrong;Annu. Rev. Physiol.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3