Affiliation:
1. Department of Biomedical Sciences, University of Cagliari , Cagliari , Italy
2. Biology Department, William Paterson University , Wayne, New Jersey , USA
Abstract
Abstract
Background
Rats emit 50-kHz ultrasonic vocalizations (USVs) in response to nonpharmacological and pharmacological stimuli, with addictive psychostimulants being the most effective drugs that elicit calling behavior in rats. Earlier investigations found that dopamine D1-like and D2-like receptors modulate the emission of 50-kHz USVs stimulated in rats by the acute administration of addictive psychostimulants. Conversely, information is lacking on how dopamine D1-like and D2-like receptors modulate calling behavior in rats that are repeatedly treated with addictive psychostimulants.
Methods
We evaluated the emission of 50-kHz USVs in rats repeatedly treated (×5 on alternate days) with amphetamine (1 mg/kg, i.p.) either alone or together with (1) SCH 23390 (0.1–1 mg/kg, s.c.), a dopamine D1 receptor antagonist; (2) raclopride (0.3–1 mg/kg, s.c.), a selective dopamine D2 receptor antagonist; or (3) a combination of SCH 23390 and raclopride (0.1 + 0.3 mg/kg, s.c.). Calling behavior of rats was recorded following pharmacological treatment, as well as in response to the presentation of amphetamine-paired cues and to amphetamine challenge (both performed 7 days after treatment discontinuation).
Results
Amphetamine-treated rats displayed a sensitized 50-kHz USV emission during repeated treatment, as well as marked calling behavior in response to amphetamine-paired cues and to amphetamine challenge. Antagonism of D1 or D2 receptors either significantly suppressed or attenuated the emission of 50-kHz USVs in amphetamine-treated rats, with a maximal effect after synergistic antagonism of both receptors.
Conclusions
These results shed further light on how dopamine transmission modulates the emission of 50-kHz USVs in rats treated with psychoactive drugs.
Publisher
Oxford University Press (OUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献