Machine Learning Models Improve the Diagnostic Yield of Peripheral Blood Flow Cytometry

Author:

Zhang M Lisa1,Guo Alan X2,Kadauke Stephan3,Dighe Anand S1,Baron Jason M1,Sohani Aliyah R1

Affiliation:

1. Department of Pathology, Massachusetts General Hospital, Boston

2. Independent Researcher, Boston, MA, Philadelphia

3. Department of Pathology, University of Pennsylvania, Philadelphia

Abstract

Abstract Objectives Peripheral blood flow cytometry (PBFC) is useful for evaluating circulating hematologic malignancies (HM) but has limited diagnostic value for screening. We used machine learning to evaluate whether clinical history and CBC/differential parameters could improve PBFC utilization. Methods PBFC cases with concurrent/recent CBC/differential were split into training (n = 626) and test (n = 159) cohorts. We classified PBFC results with abnormal blast/lymphoid populations as positive and used two models to predict results. Results Positive PBFC results were seen in 58% and 21% of training cases with and without prior HM (P < .001). % neutrophils, absolute lymphocyte count, and % blasts/other cells differed significantly between positive and negative PBFC groups (areas under the curve [AUC] > 0.7). Among test cases, a decision tree model achieved 98% sensitivity and 65% specificity (AUC = 0.906). A logistic regression model achieved 100% sensitivity and 54% specificity (AUC = 0.919). Conclusions We outline machine learning-based triaging strategies to decrease unnecessary utilization of PBFC by 35% to 40%.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Reference15 articles.

1. Flow cytometric immunophenotyping for hematologic neoplasms;Craig;Blood.,2008

2. Flow cytometry in the diagnosis and classification of malignant lymphoma and leukemia;Diamond;Cancer.,1982

3. The current role of clinical flow cytometry in the evaluation of mature B-cell neoplasms;Seegmiller;Cytometry B Clin Cytom.,2019

4. Cost-effective flow cytometry testing strategies;Leith;Clin Lab Med.,2017

5. Utilization of flow cytometry for diagnosis of hematologic malignancies in Thailand: increasing trends and diagnostic yields in 7,982 samples;Promsuwicha;J Med Assoc Thai.,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Künstliche Intelligenz im medizinischen Labor: KI – aktueller Stand und Zukunftsperspektiven;Trillium Diagnostik;2024-03-21

2. Machine learning-based clinical decision support using laboratory data;Clinical Chemistry and Laboratory Medicine (CCLM);2023-11-29

3. Building the Model;Archives of Pathology & Laboratory Medicine;2022-10-10

4. AIM in Haematology;Artificial Intelligence in Medicine;2022

5. Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review;Clinical Chemistry;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3