Affiliation:
1. Department of Ecology , College of Biology and the Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037 , P.R. China
2. Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education , Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037 , P.R. China
Abstract
Abstract
To understand the regulation of roots plasma membrane H+-ATPase in Masson pine responding to acid deposition, the changes in biomass, plant morphology, intracellular H+, enzyme activity and H+-ATPase genes expression in Masson pine seedlings exposed to simulated acid rain (SAR, pH 5.6 and 4.6) with and without vanadate were studied. Simulated acid rain exposure for 60 days increased the intracellular H+ in pine roots whether added with 0.1 mM Na3VO4 or not. The growth of seedlings treated with SAR was maintained well, even the primary lateral root length, root dry weight and number of root tips in seedlings exposed to SAR at pH 4.6 were higher than that of the control (pH 6.6). However, the addition of vanadate resulted in severe growth inhibition and obvious decline in morphological parameters. Similarly, ATP hydrolytic activity and H+ transport activity of roots plasma membrane H+-ATPase, both were stimulated by SAR whereas they were inhibited by vanadate, and the highest activity stimulation was observed in pine roots subjected to SAR at pH 4.6. In addition, SAR also induced the expression of the investigated H+-ATPase subunits (atpB, atpE, atpF, atpH and atpI). Therefore, the roots plasma membrane H+-ATPase is instrumental in the growth of Masson pine seedlings adapting to acid rain by a manner of pumping more protons across the membrane through enhancing its activity, and which involves the upregulated gene expression of roots H+-ATPase subunits at transcriptional level.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献