Involvement of HD-ZIP I transcription factors LcHB2 and LcHB3 in fruitlet abscission by promoting transcription of genes related to the biosynthesis of ethylene and ABA in litchi

Author:

Ma Xingshuai12,Li Caiqin12,Huang Xuming12,Wang Huicong12,Wu Hong1,Zhao Minglei12,Li Jianguo12

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China

2. Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China

Abstract

Abstract Abnormal fruitlet abscission is a limiting factor in the production of litchi, an economically important fruit in Southern Asia. Both ethylene and abscisic acid (ABA) induce organ abscission in plants. Although ACS/ACO and NCED genes are known to encode key enzymes required for ethylene and ABA biosynthesis, respectively, the transcriptional regulation of these genes is unclear in the process of plant organ shedding. Here, two polygalacturonase (PG) genes (LcPG1 and LcPG2) and two novel homeodomain-leucine zipper I transcription factors genes (LcHB2 and LcHB3) were identified as key genes associated with the fruitlet abscission in litchi. The expression of LcPG1 and LcPG2 was strongly associated with litchi fruitlet abscission, consistent with enhanced PG activity and reduced homogalacturonan content in fruitlet abscission zones (FAZs). The promoter activities of LcPG1/2 were enhanced by ethephon and ABA. In addition, the production of ethylene and ABA in fruitlets was significantly increased during fruit abscission. Consistently, expression of five genes (LcACO2, LcACO3, LcACS1, LcACS4 and LcACS7) related to ethylene biosynthesis and one gene (LcNCED3) related to ABA biosynthesis in FAZs were activated. Further, electrophoretic mobility shift assays and transient expression experiments demonstrated that both LcHB2 and LcHB3 could directly bind to the promoter of LcACO2/3, LcACS1/4/7 and LcNCED3 genes and activate their expression. Collectively, we propose that LcHB2/3 are involved in the litchi fruitlet abscission through positive regulation of ethylene and ABA biosynthesis.

Funder

China Agricultural Research System

Postdoctoral Science Foundation of China

Innovation Team Project of the Department of Education of Guangdong Province

Guangzhou Science and Technology Key Project

Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3