Using heat plumes to simulate post-fire effects on cambial viability and hydraulic performance in Sequoia sempervirens stems

Author:

Salladay Ryan A1ORCID,Pittermann Jarmila1

Affiliation:

1. Ecology and Evolutionary Biology, University of California , Santa Cruz, Santa Cruz, CA 95060 , USA

Abstract

Abstract Injury to the xylem and vascular cambium is proposed to explain mortality following low severity fires. These tissues have been assessed independently, but the relative significance of the xylem and cambium is still uncertain. The goal of this study is to evaluate the xylem dysfunction hypothesis and cambium necrosis hypothesis simultaneously. The hot dry conditions of a low severity fire were simulated in a drying oven, exposing Sequoia sempervirens (Lamb. ex D. Don) shoots to 70 and 100 °C for 6–60 min. Cambial viability was measured with Neutral Red stain and water transport capacity was assessed by calculating the loss of hydraulic conductivity. Vulnerability curves were also constructed to determine susceptibility to drought-induced embolism following heat exposure. The vascular cambium died completely at 100 °C after only 6 min of heat exposure, while cells remained viable at 70 °C temperatures for up to 15 min. Sixty minutes of exposure to 70 °C reduced stem hydraulic conductivity by 40%, while 45 min at 100 °C caused complete loss of conductivity. The heat treatments dropped hydraulic conductivity irrecoverably but did not significantly impact post-fire vulnerability to embolism. Overall, the damaging effects of high temperature occurred more rapidly in the vascular cambium than xylem following heat exposure. Importantly, the xylem remained functional until the most extreme treatments, long after the vascular cambium had died. Our results suggest that the viability of the vascular cambium may be more critical to post-fire survival than xylem function in S. sempervirens. Given the complexity of fire, we recommend ground-truthing the cambial and xylem post-fire response on a diverse range of species.

Funder

National Science Foundation

CalFire Forest Health Research Program

Jean H. Langenheim Graduate Fellowship

CAMINO program at UCSC

UCSC Department of Ecology and Evolutionary Biology

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3