An evaluation of two commercial deep learning-based information retrieval systems for COVID-19 literature

Author:

Soni Sarvesh1,Roberts Kirk1ORCID

Affiliation:

1. School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA

Abstract

AbstractThe COVID-19 pandemic has resulted in a tremendous need for access to the latest scientific information, leading to both corpora for COVID-19 literature and search engines to query such data. While most search engine research is performed in academia with rigorous evaluation, major commercial companies dominate the web search market. Thus, it is expected that commercial pandemic-specific search engines will gain much higher traction than academic alternatives, leading to questions about the empirical performance of these tools. This paper seeks to empirically evaluate two commercial search engines for COVID-19 (Google and Amazon) in comparison with academic prototypes evaluated in the TREC-COVID task. We performed several steps to reduce bias in the manual judgments to ensure a fair comparison of all systems. We find the commercial search engines sizably underperformed those evaluated under TREC-COVID. This has implications for trust in popular health search engines and developing biomedical search engines for future health crises.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Reference21 articles.

1. TREC-COVID: rationale and structure of an information retrieval shared task for COVID-19;Roberts;J Am Med Inform Assoc,2020

2. TREC-COVID: constructing a pandemic information retrieval test collection;Voorhees;ACM SIGIR Forum,2020

3. Introducing medical language processing with Amazon Comprehend Medical;Kass-Hout;AWS Mach Learn Blog,2018

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3