A span-based model for extracting overlapping PICO entities from randomized controlled trial publications

Author:

Zhang Gongbo1ORCID,Zhou Yiliang2,Hu Yan3ORCID,Xu Hua4ORCID,Weng Chunhua1ORCID,Peng Yifan2ORCID

Affiliation:

1. Department of Biomedical Informatics, Columbia University , New York, NY 10032, United States

2. Department of Population Health Sciences, Weill Cornell Medicine , New York, NY 10065, United States

3. McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston , Houston, TX 77030, United States

4. Section of Biomedical Informatics and Data Science, Yale School of Medicine , New Haven, CT 06510, United States

Abstract

Abstract Objectives Extracting PICO (Populations, Interventions, Comparison, and Outcomes) entities is fundamental to evidence retrieval. We present a novel method, PICOX, to extract overlapping PICO entities. Materials and Methods PICOX first identifies entities by assessing whether a word marks the beginning or conclusion of an entity. Then, it uses a multi-label classifier to assign one or more PICO labels to a span candidate. PICOX was evaluated using 1 of the best-performing baselines, EBM-NLP, and 3 more datasets, ie, PICO-Corpus and randomized controlled trial publications on Alzheimer’s Disease (AD) or COVID-19, using entity-level precision, recall, and F1 scores. Results PICOX achieved superior precision, recall, and F1 scores across the board, with the micro F1 score improving from 45.05 to 50.87 (P ≪.01). On the PICO-Corpus, PICOX obtained higher recall and F1 scores than the baseline and improved the micro recall score from 56.66 to 67.33. On the COVID-19 dataset, PICOX also outperformed the baseline and improved the micro F1 score from 77.10 to 80.32. On the AD dataset, PICOX demonstrated comparable F1 scores with higher precision when compared to the baseline. Conclusion PICOX excels in identifying overlapping entities and consistently surpasses a leading baseline across multiple datasets. Ablation studies reveal that its data augmentation strategy effectively minimizes false positives and improves precision.

Funder

National Library of Medicine

National Center for Advancing Clinical and Translational Science

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3