Empirical assessment of bias in machine learning diagnostic test accuracy studies

Author:

Crowley Ryan J12,Tan Yuan Jin13,Ioannidis John P A13456

Affiliation:

1. Meta-Research Innovation Center at Stanford, Stanford University, Stanford, California, USA

2. Department of Bioengineering, Stanford School of Engineering, Stanford University, Stanford, California, USA

3. Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA

4. Stanford Prevention Research Center, Department of Medicine, Stanford Medicine, Stanford University, Stanford, California, USA

5. Department of Biomedical Data Science, Stanford Medicine, Stanford University, Stanford, California, USA

6. Department of Statistics, School of Humanities and Science, Stanford University, Stanford, California, USA

Abstract

Abstract Objective Machine learning (ML) diagnostic tools have significant potential to improve health care. However, methodological pitfalls may affect diagnostic test accuracy studies used to appraise such tools. We aimed to evaluate the prevalence and reporting of design characteristics within the literature. Further, we sought to empirically assess whether design features may be associated with different estimates of diagnostic accuracy. Materials and Methods We systematically retrieved 2 × 2 tables (n = 281) describing the performance of ML diagnostic tools, derived from 114 publications in 38 meta-analyses, from PubMed. Data extracted included test performance, sample sizes, and design features. A mixed-effects metaregression was run to quantify the association between design features and diagnostic accuracy. Results Participant ethnicity and blinding in test interpretation was unreported in 90% and 60% of studies, respectively. Reporting was occasionally lacking for rudimentary characteristics such as study design (28% unreported). Internal validation without appropriate safeguards was used in 44% of studies. Several design features were associated with larger estimates of accuracy, including having unreported (relative diagnostic odds ratio [RDOR], 2.11; 95% confidence interval [CI], 1.43-3.1) or case-control study designs (RDOR, 1.27; 95% CI, 0.97-1.66), and recruiting participants for the index test (RDOR, 1.67; 95% CI, 1.08-2.59). Discussion Significant underreporting of experimental details was present. Study design features may affect estimates of diagnostic performance in the ML diagnostic test accuracy literature. Conclusions The present study identifies pitfalls that threaten the validity, generalizability, and clinical value of ML diagnostic tools and provides recommendations for improvement.

Funder

Stanford Graduate Fellowship

Stanford Major Grant

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3