Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record

Author:

Walonoski Jason1,Kramer Mark1,Nichols Joseph1,Quina Andre1,Moesel Chris1,Hall Dylan1,Duffett Carlton1,Dube Kudakwashe2,Gallagher Thomas3,McLachlan Scott2

Affiliation:

1. The MITRE Corporation, Bedford, MA, USA

2. HIKER Group, Massey University, Palmerston North, New Zealand,

3. Department of Applied Computing and Engineering Technology, University of Montana, Missoula, MT, USA

Abstract

Abstract Objective Our objective is to create a source of synthetic electronic health records that is readily available; suited to industrial, innovation, research, and educational uses; and free of legal, privacy, security, and intellectual property restrictions. Materials and Methods We developed Synthea, an open-source software package that simulates the lifespans of synthetic patients, modeling the 10 most frequent reasons for primary care encounters and the 10 chronic conditions with the highest morbidity in the United States. Results Synthea adheres to a previously developed conceptual framework, scales via open-source deployment on the Internet, and may be extended with additional disease and treatment modules developed by its user community. One million synthetic patient records are now freely available online, encoded in standard formats (eg, Health Level-7 [HL7] Fast Healthcare Interoperability Resources [FHIR] and Consolidated-Clinical Document Architecture), and accessible through an HL7 FHIR application program interface. Discussion Health care lags other industries in information technology, data exchange, and interoperability. The lack of freely distributable health records has long hindered innovation in health care. Approaches and tools are available to inexpensively generate synthetic health records at scale without accidental disclosure risk, lowering current barriers to entry for promising early-stage developments. By engaging a growing community of users, the synthetic data generated will become increasingly comprehensive, detailed, and realistic over time. Conclusion Synthetic patients can be simulated with models of disease progression and corresponding standards of care to produce risk-free realistic synthetic health care records at scale.

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3