Endothelial cell crosstalk improves browning but hinders white adipocyte maturation in 3D engineered adipose tissue

Author:

Hammel Jennifer H1,Bellas Evangelia1

Affiliation:

1. Department of Bioengineering, Temple University, Philadelphia, PA, USA

Abstract

Abstract Central to the development of adipose tissue (AT) engineered models is the supporting vasculature. It is a key part of AT function and long-term maintenance, but the crosstalk between adipocytes and endothelial cells is not well understood. Here, we directly co-culture the two cell types at varying ratios in a 3D Type I collagen gel. Constructs were evaluated for adipocyte maturation and function and vascular network organization. Further, these constructs were treated with forskolin, a beta-adrenergic agonist, to stimulate lipolysis and browning. Adipocytes in co-cultures were found to be less mature than an adipocyte-only control, shown by smaller lipid droplets and downregulation of key adipocyte-related genes. The most extensive vascular network formation was found in the 1:1 co-culture, supported by vascular endothelial growth factor (VEGF) upregulation. After forskolin treatment, the presence of endothelial cells was shown to upregulate PPAR coactivator 1 alpha (PGC-1α) and leptin, but not uncoupling protein 1 (UCP1), suggesting a specific crosstalk that enhances early stages of browning.

Funder

Kidney Diseases Diabetic Complications Consortium

National Institute of Diabetes and Digestive

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3