SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data

Author:

Qiu Yushan1,Yan Chang1,Zhao Pu2,Zou Quan3

Affiliation:

1. College of Mathematics and Statistics , Shenzhen University, 518000, Guangdong , China

2. College of Life and Health Sciences , Northeastern University, Shenyang, 110169 , China

3. Institute of Fundamental and Frontier Sciences , University of Electronic Science and Technology of China, Chengdu, 610056 , China

Abstract

Abstract Motivation Single-cell RNA sequencing (scRNA-seq) technology attracts extensive attention in the biomedical field. It can be used to measure gene expression and analyze the transcriptome at the single-cell level, enabling the identification of cell types based on unsupervised clustering. Data imputation and dimension reduction are conducted before clustering because scRNA-seq has a high ‘dropout’ rate, noise and linear inseparability. However, independence of dimension reduction, imputation and clustering cannot fully characterize the pattern of the scRNA-seq data, resulting in poor clustering performance. Herein, we propose a novel and accurate algorithm, SSNMDI, that utilizes a joint learning approach to simultaneously perform imputation, dimensionality reduction and cell clustering in a non-negative matrix factorization (NMF) framework. In addition, we integrate the cell annotation as prior information, then transform the joint learning into a semi-supervised NMF model. Through experiments on 14 datasets, we demonstrate that SSNMDI has a faster convergence speed, better dimensionality reduction performance and a more accurate cell clustering performance than previous methods, providing an accurate and robust strategy for analyzing scRNA-seq data. Biological analysis are also conducted to validate the biological significance of our method, including pseudotime analysis, gene ontology and survival analysis. We believe that we are among the first to introduce imputation, partial label information, dimension reduction and clustering to the single-cell field. Availability and implementation The source code for SSNMDI is available at https://github.com/yushanqiu/SSNMDI.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Natural Science Foundation of SZU

Special Projects of the Central Government in Guidance of Local Science and Technology Development

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3