Distinct neural signatures underlying information maintenance and manipulation in working memory

Author:

Shi Dongping123ORCID,Yu Qing12ORCID

Affiliation:

1. Institute of Neuroscience , Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, , Shanghai 200031 , China

2. Chinese Academy of Sciences , Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, , Shanghai 200031 , China

3. University of Chinese Academy of Sciences , Beijing 100049 , China

Abstract

Abstract Previous working memory research has demonstrated robust stimulus representations during memory maintenance in both voltage and alpha-band activity in electroencephalography. However, the exact functions of these 2 neural signatures have remained controversial. Here we systematically investigated their respective contributions to memory manipulation. Human participants either maintained a previously seen spatial location, or manipulated the location following a mental rotation cue over a delay. Using multivariate decoding, we observed robust location representations in low-frequency voltage and alpha-band oscillatory activity with distinct spatiotemporal dynamics: location representations were most evident in posterior channels in alpha-band activity, but were most prominent in the more anterior, central channels in voltage signals. Moreover, the temporal emergence of manipulated representation in central voltage preceded that in posterior alpha-band activity, suggesting that voltage might carry stimulus-specific source signals originated internally from anterior cortex, whereas alpha-band activity might reflect feedback signals in posterior cortex received from higher-order cortex. Lastly, while location representations in both signals were coded in a low-dimensional neural subspace, location representation in central voltage was higher-dimensional and underwent a representational transformation that exclusively predicted memory behavior. Together, these results highlight the crucial role of central voltage in working memory, and support functional distinctions between voltage and alpha-band activity.

Funder

National Natural Science Foundation of China

Shanghai Pujiang Program

Ministry of Science and Technology of China

CAS Project for Young Scientists in Basic Research

Shanghai Municipal Science and Technology Major Project

Publisher

Oxford University Press (OUP)

Reference52 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3