Affiliation:
1. Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour , Kapittelweg 29, 6525 EN, Nijmegen , Netherlands
Abstract
Abstract
The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT−/−) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex–amygdala synchronization. We trained SERT−/− and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS−), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT−/− rats showed a nonsignificant trend for more accurate responses to the CS−. Electrophysiologically, orbitofrontal cortex—amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT−/− rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex—amygdala functional connectivity during an auditory discrimination task.
Funder
Radboud Excellence Initiative
Radboud University
Publisher
Oxford University Press (OUP)