Functional Subdivisions of Magnocellular Cell Groups in Human Basal Forebrain: Test–Retest Resting-State Study at Ultra-high Field, and Meta-analysis

Author:

Yuan Rui1,Biswal Bharat B12ORCID,Zaborszky Laszlo3

Affiliation:

1. Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA

2. The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China

3. Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA

Abstract

Abstract The heterogeneous neuronal subgroups of the basal forebrain corticopetal system (BFcs) have been shown to modulate cortical functions through their cholinergic, gamma-aminobutyric acid-ergic, and glutamatergic projections to the entire cortex. Although previous studies suggested that the basalo-cortical projection system influences various cognitive functions, particularly via its cholinergic component, these studies only focused on certain parts of the BFcs or nearby structures, leaving aside a more systematic picture of the functional connectivity of BFcs subcompartments. Moreover, these studies lacked the high-spatial resolution and the probability maps needed to identify specific subcompartments. Recent advances in the ultra-high field 7T functional magnetic resonance imaging (fMRI) provided potentially unprecedented spatial resolution of functional MRI images to study the subdivision of the BFcs. In this study, the BF space containing corticopetal cells was divided into 3 functionally distinct subdivisions based on functional connection to cortical regions derived from fMRI. The overall functional connection of each BFcs subdivision was examined with a test-retest study. Finally, a meta-analysis was used to study the related functional topics of each BF subdivision. Our results demonstrate distinct functional connectivity patterns of these subdivisions along the rostrocaudal axis of the BF. All three compartments have shown consistent segregation and overlap at specific target regions including the hippocampus, insula, thalamus, and the cingulate gyrus, suggesting functional integration and separation in BFcs.

Funder

National Institutes of Health

NS0

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3