Distributed and hierarchical neural encoding of multidimensional biological motion attributes in the human brain

Author:

Wang Ruidi123ORCID,Lu Xiqian123ORCID,Jiang Yi123ORCID

Affiliation:

1. State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences , 16 Lincui Road, Beijing 100101 , China

2. Department of Psychology, University of Chinese Academy of Sciences , 19A Yuquan Road, Beijing 100049 , China

3. Chinese Institute for Brain Research , 26 Science Park Road, Beijing 102206 , China

Abstract

Abstract The human visual system can efficiently extract distinct physical, biological, and social attributes (e.g. facing direction, gender, and emotional state) from biological motion (BM), but how these attributes are encoded in the brain remains largely unknown. In the current study, we used functional magnetic resonance imaging to investigate this issue when participants viewed multidimensional BM stimuli. Using multiple regression representational similarity analysis, we identified distributed brain areas, respectively, related to the processing of facing direction, gender, and emotional state conveyed by BM. These brain areas are governed by a hierarchical structure in which the respective neural encoding of facing direction, gender, and emotional state is modulated by each other in descending order. We further revealed that a portion of the brain areas identified in representational similarity analysis was specific to the neural encoding of each attribute and correlated with the corresponding behavioral results. These findings unravel the brain networks for encoding BM attributes in consideration of their interactions, and highlight that the processing of multidimensional BM attributes is recurrently interactive.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Strategic Priority Research Program

Interdisciplinary Innovation Team

Chinese Academy of Sciences

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3