Cortical representation of speech temporal information through high gamma-band activity and its temporal modulation

Author:

Tamura Shunsuke12ORCID,Hirano Yoji123ORCID

Affiliation:

1. University of Miyazaki Department of Psychiatry, Faculty of Medicine, , Miyazaki, Japan

2. Kyushu University Department of Neuropsychiatry, Graduate School of Medical Sciences, , Fukuoka, Japan

3. The University of Tokyo Institute of Industrial Science, , Tokyo, Japan

Abstract

Abstract Numerous studies have investigated low-frequency (theta-band) and high-frequency (gamma-band) neural activities that are phase-locked to temporal structures, including the temporal envelope and fine structure (TFS) of speech signals. Nonetheless, the neural mechanisms underlying the interaction between envelope and TFS processing remain elusive. Here we examined high gamma-band activities and their low-frequency amplitude modulations while listening to monotone speech (MS) with a fundamental frequency (F0) of 80 Hz and non-speech sounds with similar temporal characteristics to MS, namely an amplitude-modulated click train (AMC). Additionally, we utilized noise-vocoded speech (NVS) to evaluate the impact of eliminating the TFS from MS on the high gamma-band activity. We observed discernible high gamma-band activity at the same frequency as F0 of MS and the train frequency of AMC (80 Hz). Furthermore, source localization analysis revealed that the high gamma-band activities exhibited left hemisphere dominance in both MS and AMC conditions. Finally, high gamma-band activities exhibited amplitude-modulation at the same rate as the stimulus envelope of MS and AMC (5 Hz), though such modulation was not observed in NVS. Our findings indicate that the high gamma-band activity in the left hemisphere is pivotal in the interaction of envelope and TFS information processing, regardless of the nature of the stimulus being speech or non-speech.

Funder

JSPS

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3