Right Posterior Insula and Putamen Volume Mediate the Effect of Oxytocin Receptor Polygenic Risk for Autism Spectrum Disorders on Reward Dependence in Healthy Adults

Author:

Wang Junping1ORCID,Zhang Peng2,Li Wei2,Wen Qin1ORCID,Liu Feng1,Xu Jiayuan1,Xu Qiang1,Zhu Dan1,Ye Zhaoxiang2,Yu Chunshui13

Affiliation:

1. Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China

2. Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China

3. CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China

Abstract

Abstract Much evidence indicates the influence of the oxytocin receptor (OXTR) gene on autism spectrum disorders (ASDs), a set of disorders characterized by a range of deficits in prosocial behaviors, which are closely related to the personality trait of reward dependence (RD). However, we do not know the effect of the OXTR polygenic risk score for ASDs (OXTR-PRSASDs) on RD and its underlying neuroanatomical substrate. Here, we aimed to investigate associations among the OXTR-PRSASDs, gray matter volume (GMV), and RD in two independent datasets of healthy young adults (n = 450 and 540). We found that the individuals with higher OXTR-PRSASDs had lower RD and significantly smaller GMV in the right posterior insula and putamen. The GMV of this region showed a positive correlation with RD and a mediation effect on the association between OXTR-PRSASDs and RD. Moreover, the correlation map between OXTR-PRSASDs and GMV showed spatial correlation with OXTR gene expression. All results were highly consistent between the two datasets. These findings highlight a possible neural pathway by which the common variants in the OXTR gene associated with ASDs may jointly impact the GMV of the right posterior insula and putamen and further affect the personality trait of RD.

Funder

National Key Research and Development Program of China

Tianjin Key Technology R&D Program

Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipal Science and Technology Commission

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3