Uptake and accumulation mechanisms of hexachloroplatinate(IV) ions in the unicellular alga, Pseudococcomyxa simplex

Author:

Tokoro Masato1,Imamura Yu1,Kumagai Kazuhiro2ORCID,Hokura Akiko3ORCID

Affiliation:

1. Graduate School of Engineering, Tokyo Denki University , 5 Senju-Asahicho, Adachi, Tokyo 120-8551 , Japan

2. Nanodimensional Standards Group, Research Institute for Material and Chemical Measurement National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi Tsukuba, Ibaraki 305-8565

3. Department of Applied Chemistry, School of Engineering, Tokyo Denki University , 5 Senju-Asahicho, Adachi, Tokyo 120-8551 , Japan

Abstract

Abstract Platinum uptake was examined by adding hexachloroplatinate(IV) solution to the unicellular alga Pseudococcomyxa simplex. After the addition of platinum solution ([Pt] = 100 mg/kg, pH 3.2–3.4) for a certain time, the cells were quickly frozen and subjected to μ-XRF (X-ray fluorescence) analysis using synchrotron X-rays. The beam size of approximately 1 micrometer allowed visualization of the platinum distribution within a single cell. On the other hand, we examined platinum uptake in enzyme-treated protoplasts and lyophilized cells and found that the platinum uptake concentrations in these samples were higher than in living in-vivo cells. Cell wall and cell metabolism were presumed to interfere with the uptake of hexachloroplatinate(IV) ions. All platinum ions taken up by the cells were reduced to divalent form. The effect of light on platinum addition was also investigated. When platinum was added under light conditions, some samples showed higher platinum accumulation than under shade conditions.

Funder

JSPS

Research Institute for Science and Technology of Tokyo Denki University

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3