Vector unmixing of multicomponent palaeomagnetic data

Author:

Tonti-Filippini Justin A D1ORCID,Gilder Stuart A1

Affiliation:

1. Department for Earth and Environmental Sciences, Ludwig-Maximilians-Universität , D-80333 Munich, Germany

Abstract

SUMMARYPalaeomagnetic investigations often encounter multiple magnetization components, where secondary processes have obscured, partially overprinted or completely replaced the original (primary) remanent magnetization. Identification and separation of primary and secondary magnetizations are generally carried out with principal component analysis of stepwise demagnetization data. However, rocks may contain multiple generations of magnetic minerals with overlapping unblocking ranges that complicate the discrimination of components when applying best-fitting line procedures. Developing a method to differentiate and quantify contributions of overlapping magnetic components using directional data is therefore highly desirable. This paper presents a method to unmix stepwise demagnetization data using an inverse modelling approach. We show that the method is capable of accurately resolving two or three magnetic components with overlapping or superimposed unblocking spectra as well as quantifying absolute component contributions. The method depends on accurate identification and selection of end-member components prior to analysis; in doing so, the method can help palaeomagnetists understand how magnetization components combine to explain their data. We show that the dilution of one component by more than ca. 25 per cent from another component can result in linear demagnetization curves that decay to the origin on orthogonal plots, but whose best-fitting direction can significantly deviate from both end-members. The efficacy of the method is demonstrated through examples of demagnetization data from hematite and/or magnetite-bearing sandstones from China. This method can be broadly applied to all multicomponent magnetization problems in palaeomagnetism.

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3