A Model for Random Braiding in Graph Configuration Spaces

Author:

Levin David A1,Ramos Eric1,Young Benjamin1

Affiliation:

1. University of Oregon Department of Mathematics, Fenton Hall, Eugene, OR 97405, USA

Abstract

Abstract We define and study a model of winding for non-colliding particles in finite trees. We prove that the asymptotic behavior of this statistic satisfies a central limiting theorem, analogous to similar results on winding of bounded particles in the plane [ 42]. We also propose certain natural open questions and conjectures, whose confirmation would provide new insights on configuration spaces of trees.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference43 articles.

1. Subdivisional spaces and graph braid groups;An;Documenta Mathematica

2. An, Byung Hee Drummond-Cole and ben Knudsen. Asymptotic homology of graph braid groups;Gabriel,2020

3. The cohomology ring of the group of dyed braids;Arnold;Matematicheskie Zametki

4. Windings of random walks;Bélisle;The Annals of Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On a random entanglement problem;IMA Journal of Applied Mathematics;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3