Shard Polytopes

Author:

Padrol Arnau1,Pilaud Vincent2,Ritter Julian3

Affiliation:

1. Institut de Mathématiques de Jussieu—Paris Rive Gauche, Sorbonne Université , Paris 75252, France

2. CNRS & LIX, École Polytechnique , Palaiseau 91128, France

3. LIX, École Polytechnique , Palaiseau 91128, France

Abstract

Abstract For any lattice congruence of the weak order on permutations, Reading proved that gluing together the cones of the braid fan that belong to the same congruence class defines a complete fan, called a quotient fan, and Pilaud and Santos showed that it is the normal fan of a polytope, called a quotientope. In this paper, we provide a simpler approach to realize quotient fans based on Minkowski sums of elementary polytopes, called shard polytopes, which have remarkable combinatorial and geometric properties. In contrast to the original construction of quotientopes, this Minkowski sum approach extends to type $B$.

Funder

French ANR

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference73 articles.

1. Hopf monoids and generalized permutahedra;Aguiar;Mem. Amer. Math. Soc.,2017

2. Matroid polytopes and their volumes;Ardila;Discrete Comput. Geom.,2010

3. Coxeter submodular functions and deformations of Coxeter permutahedra;Ardila;Adv. Math.,2020

4. Lifted generalized permutahedra and composition polynomials;Ardila;Adv. Appl. Math.,2013

5. Scattering forms and the positive geometry of kinematics, color and the worldsheet;Arkani-Hamed;J. High Energy Phys.,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acyclic Reorientation Lattices and Their Lattice Quotients;Annals of Combinatorics;2024-08-09

2. Signed permutohedra, delta‐matroids, and beyond;Proceedings of the London Mathematical Society;2024-03

3. Celebrating Loday’s associahedron;Archiv der Mathematik;2023-10-31

4. Combinatorial Generation via Permutation Languages. III. Rectangulations;Discrete & Computational Geometry;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3