On the p-Rank of Class Groups of p-Extensions

Author:

Liu Yuan1

Affiliation:

1. Department of Mathematics, University of Illinois Urbana-Champaign , 1409 W Green Street, Urbana, IL 61801, USA

Abstract

Abstract We prove a local–global principle for the embedding problems of global fields with restricted ramification. By this local–global principle, for a global field $k$, we use only the local information to give a presentation of the maximal pro-$p$ Galois group of $k$ with restricted ramification, when some Galois cohomological conditions are satisfied. For a Galois $p$-extension $K/k$, we use our presentation result for $k$ to study the structure of pro-$p$ Galois groups of $K$. Then for $k={{\mathbb{Q}}}$ and $k={{\mathbb{F}}}_{q}(t)$ with $p\nmid q$, we give upper and lower bounds for the rank of $p$-torsion subgroup of the class group of $K$, and these bounds depend on the structure of the Galois group and the inertia subgroups of $K/k$. Finally, we study the $p$-rank of class groups of cyclic $p$-extensions of ${{\mathbb{Q}}}$ and the $2$-rank of class groups of multiquadratic extensions of ${{\mathbb{Q}}}$, for a fixed ramification type.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference30 articles.

1. Heuristics for p-class towers of imaginary quadratic fields;Boston;Math. Ann.,2017

2. Heuristics for p-class towers of real quadratic fields;Boston;J. Inst. Math. Jussieu,2021

3. Cohen–Lenstra heuristics of quadratic number fields;Fouvry,2006

4. On the 4-rank of class groups of quadratic number fields;Fouvry;Invent. Math.,2007

5. On Dirichlet biquadratic fields;Fouvry,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3