Affiliation:
1. School of Mathematics, The University of Leeds, Leeds LS2 9JT, UK
Abstract
Abstract
We obtain inequalities for all Laplace eigenvalues of Riemannian manifolds with an upper sectional curvature bound, whose rudiment version for the 1st Laplace eigenvalue was discovered by Berger in 1979. We show that our inequalities continue to hold for conformal metrics, and moreover, extend naturally to minimal submanifolds. In addition, we obtain explicit upper bounds for Laplace eigenvalues of minimal submanifolds in terms of geometric quantities of the ambient space.
Publisher
Oxford University Press (OUP)
Reference36 articles.
1. Injectivity Radius Estimates and Sphere Theorems;Abresch,1997
2. Complete minimal varieties in hyperbolic space;Anderson;Invent. Math.,1982
3. The compactification of a minimal submanifold in Euclidean space by the Gauss map;Anderson,1984
4. Remarque sur un article de Marcel Berger: sur une inégalité universelle pour la première valeur propre du Laplacien;Bérard;Bull. Soc. Math. France,1980
5. Une inégalité universelle pour la première valeur propre du laplacien;Berger;Bull. Soc. Math. France,1979