Berger’s Inequality in the Presence of Upper Sectional Curvature Bound

Author:

Kokarev Gerasim1

Affiliation:

1. School of Mathematics, The University of Leeds, Leeds LS2 9JT, UK

Abstract

Abstract We obtain inequalities for all Laplace eigenvalues of Riemannian manifolds with an upper sectional curvature bound, whose rudiment version for the 1st Laplace eigenvalue was discovered by Berger in 1979. We show that our inequalities continue to hold for conformal metrics, and moreover, extend naturally to minimal submanifolds. In addition, we obtain explicit upper bounds for Laplace eigenvalues of minimal submanifolds in terms of geometric quantities of the ambient space.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference36 articles.

1. Injectivity Radius Estimates and Sphere Theorems;Abresch,1997

2. Complete minimal varieties in hyperbolic space;Anderson;Invent. Math.,1982

3. The compactification of a minimal submanifold in Euclidean space by the Gauss map;Anderson,1984

4. Remarque sur un article de Marcel Berger: sur une inégalité universelle pour la première valeur propre du Laplacien;Bérard;Bull. Soc. Math. France,1980

5. Une inégalité universelle pour la première valeur propre du laplacien;Berger;Bull. Soc. Math. France,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3