The Tropical Manin–Mumford Conjecture

Author:

Richman David Harry1

Affiliation:

1. Department of Mathematics, University of Washington , Seattle, WA 98195-4350, USA

Abstract

Abstract In analogy with the Manin–Mumford conjecture for algebraic curves, one may ask how a metric graph under the Abel–Jacobi embedding intersects torsion points of its Jacobian. We show that the number of torsion points is finite for metric graphs of genus ${g\geq 2}$, which are biconnected and have edge lengths that are “sufficiently irrational” in a precise sense. Under these assumptions, the number of torsion points is bounded by $3g-3$. Next, we study bounds on the number of torsion points in the image of higher-degree Abel–Jacobi embeddings, which send $d$-tuples of points to the Jacobian. This motivates the definition of the “independent girth” of a graph, a number that is a sharp upper bound for $d$ such that the higher-degree Manin–Mumford property holds.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. Abelian varieties and curves in W$_d$(C);Abramovich;Compos. Math.,1991

2. Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem;An;Forum Math. Sigma,2014

3. Degeneration of linear series from the tropical point of view and applications;Baker,2016

4. Riemann–Roch and Abel–Jacobi theory on a finite graph;Baker;Adv. Math.,2007

5. Torsion packets on curves;Baker;Compos. Math.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3