On the Second Homotopy Group of Spaces of Commuting Elements in Lie Groups

Author:

Adem Alejandro1,Gómez José Manuel2,Gritschacher Simon3

Affiliation:

1. Department of Mathematics, University of British Columbia, Vancouver BC V6T 1Z2, Canada

2. Escuela de Matemáticas Universidad Nacional de Colombia sede Medellín, 050034 Medellín, Colombia

3. Department of Mathematical Sciences University of Copenhagen, 2100 Copenhagen, Denmark

Abstract

Abstract Let $G$ be a compact connected Lie group and $n\geqslant 1$ an integer. Consider the space of ordered commuting $n$-tuples in $G$, ${\operatorname {\textrm {Hom}}}({\mathbb {Z}}^n,G)$, and its quotient under the adjoint action, $\textrm {Rep}({\mathbb {Z}}^n,G):={\operatorname {\textrm {Hom}}}({\mathbb {Z}}^n,G)/G$. In this article, we study and in many cases compute the homotopy groups $\pi _2({\operatorname {\textrm {Hom}}}({\mathbb {Z}}^n,G))$. For $G$ simply connected and simple, we show that $\pi _2({\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G))\cong {\mathbb {Z}}$ and $\pi _2(\textrm {Rep}({\mathbb {Z}}^2,G))\cong {\mathbb {Z}}$ and that on these groups the quotient map ${\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)\to \textrm {Rep}({\mathbb {Z}}^2,G)$ induces multiplication by the Dynkin index of $G$. More generally, we show that if $G$ is simple and ${\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)_{\mathds 1}\subseteq {\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)$ is the path component of the trivial homomorphism, then $H_2({\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)_{\mathds 1};{\mathbb {Z}})$ is an extension of the Schur multiplier of $\pi _1(G)^2$ by ${\mathbb {Z}}$. We apply our computations to prove that if $B_{com}G_{\mathds 1}$ is the classifying space for commutativity at the identity component, then $\pi _4(B_{com}G_{\mathds 1})\cong {\mathbb {Z}}\oplus {\mathbb {Z}}$, and we construct examples of non-trivial transitionally commutative structures on the trivial principal $G$-bundle over the sphere ${\mathbb {S}}^{4}$.

Funder

theMax Planck Institute for Mathematics and Minciencias

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The space of commuting elements in a Lie group and maps between classifying spaces;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2023-10-27

2. Torsion in the space of commuting elements in a Lie group;Canadian Journal of Mathematics;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3