Affiliation:
1. Department of Mathematics, University of British Columbia, Vancouver BC V6T 1Z2, Canada
2. Escuela de Matemáticas Universidad Nacional de Colombia sede Medellín, 050034 Medellín, Colombia
3. Department of Mathematical Sciences University of Copenhagen, 2100 Copenhagen, Denmark
Abstract
Abstract
Let $G$ be a compact connected Lie group and $n\geqslant 1$ an integer. Consider the space of ordered commuting $n$-tuples in $G$, ${\operatorname {\textrm {Hom}}}({\mathbb {Z}}^n,G)$, and its quotient under the adjoint action, $\textrm {Rep}({\mathbb {Z}}^n,G):={\operatorname {\textrm {Hom}}}({\mathbb {Z}}^n,G)/G$. In this article, we study and in many cases compute the homotopy groups $\pi _2({\operatorname {\textrm {Hom}}}({\mathbb {Z}}^n,G))$. For $G$ simply connected and simple, we show that $\pi _2({\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G))\cong {\mathbb {Z}}$ and $\pi _2(\textrm {Rep}({\mathbb {Z}}^2,G))\cong {\mathbb {Z}}$ and that on these groups the quotient map ${\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)\to \textrm {Rep}({\mathbb {Z}}^2,G)$ induces multiplication by the Dynkin index of $G$. More generally, we show that if $G$ is simple and ${\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)_{\mathds 1}\subseteq {\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)$ is the path component of the trivial homomorphism, then $H_2({\operatorname {\textrm {Hom}}}({\mathbb {Z}}^2,G)_{\mathds 1};{\mathbb {Z}})$ is an extension of the Schur multiplier of $\pi _1(G)^2$ by ${\mathbb {Z}}$. We apply our computations to prove that if $B_{com}G_{\mathds 1}$ is the classifying space for commutativity at the identity component, then $\pi _4(B_{com}G_{\mathds 1})\cong {\mathbb {Z}}\oplus {\mathbb {Z}}$, and we construct examples of non-trivial transitionally commutative structures on the trivial principal $G$-bundle over the sphere ${\mathbb {S}}^{4}$.
Funder
theMax Planck Institute for Mathematics and Minciencias
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献