Some Geometric Inequalities by the ABP Method

Author:

Pham Doanh1

Affiliation:

1. Department of Mathematics, Rutgers University , Piscataway, NJ 08854, USA

Abstract

Abstract In this paper, we apply the so-called Alexandrov–Bakelman–Pucci (ABP) method to establish some geometric inequalities. We first prove a logarithmic Sobolev inequality for closed $n$-dimensional minimal submanifolds $\Sigma $ of $\mathbb S^{n+m}$. As a consequence, it recovers the classical result that $|\mathbb S^{n}| \leq |\Sigma |$ for $m = 1,2$. Next, we prove a Sobolev-type inequality for positive symmetric two-tensors on smooth domains in $\mathbb R^{n}$, which was established by D. Serre when the domain is convex. In the last application of the ABP method, we formulate and prove an inequality related to quermassintegrals of closed hypersurfaces of the Euclidean space.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality;Beckner;Ann. Math. (2),1993

2. A sharp bound for the area of minimal surfaces in the unit ball;Brendle;Geom. Funct. Anal.,2012

3. Minimal surfaces in ${\mathbb{S}}^3$: a survey of recent results;Brendle;Bull. Math. Sci.,2013

4. Minimal hypersurfaces and geometric inequalities;Brendle,2020

5. The isoperimetric inequality for a minimal submanifold in Euclidean space;Brendle;J. Amer. Math. Soc.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3