Higher Koszul Brackets on the Cotangent Complex

Author:

Herbig Hans-Christian1,Herden Daniel2,Seaton Christopher3

Affiliation:

1. Departamento de Matemática Aplicada , Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

2. Department of Mathematics , Baylor University, Waco, Texas, USA

3. Department of Mathematics and Computer Science , Rhodes College, Memphis, Tennessee, USA

Abstract

AbstractLet $A=\boldsymbol{k}[x_1,x_2,\dots ,x_n]/I$ be a commutative algebra where $\boldsymbol{k}$ is a field, $\operatorname{char}(\boldsymbol{k})=0$, and $I\subseteq S:=\boldsymbol{k}[x_1,x_2,\dots , x_n]$ a Poisson ideal. It is well known that $[\textrm{d} x_i,\textrm{d} x_j]:=\textrm{d}\{x_i,x_j\}$ defines a Lie bracket on the $A$-module $\Omega _{A|\boldsymbol{k}}$ of Kähler differentials, making $(A,\Omega _{A|\boldsymbol k})$ a Lie–Rinehart pair. If $A$ is not regular, that is, $\Omega _{A|\boldsymbol{k}}$ is not projective, the cotangent complex $\mathbb{L}_{A|\boldsymbol{k}}$ serves as a replacement for $\Omega _{A|\boldsymbol k}$. We prove that $\mathbb{L}_{A|\boldsymbol{k}}$ is an $L_\infty $-algebroid compatible with the Lie–Rinehart pair $(A,\Omega _{A|\boldsymbol{k}})$. The $L_\infty $-algebroid structure comes from a $P_\infty $-algebra structure on the resolvent of the morphism $S\to A$. We identify examples when this $L_\infty $-algebroid simplifies to a dg Lie algebroid, concentrating on cases where $S$ is $\mathbb{Z}_{\ge 0}$-graded and $I$ and $\{\:,\:\}$ are homogeneous.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference60 articles.

1. Comparaison de l’Homologie de Hochschild et de l’Homologie de Poisson Pour une Déformation des Surfaces de Klein;Alev,1998

2. Infinite Free Resolutions;Avramov,1998

3. Subadditivity of syzygies of Koszul algebras;Avramov;Math. Ann.,2015

4. Jacobian criteria for complete intersections. The graded case;Avramov;Invent. Math.,1994

5. Poisson Vector Bundles, Contravariant Connections and Deformations;Bursztyn;Noncommutative Geometry and String Theory (Yokohama, 2001),2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brane mechanics and gapped Lie n-algebroids;Journal of High Energy Physics;2024-08-29

2. Higher form brackets for even Nambu–Poisson algebras;Letters in Mathematical Physics;2023-09-14

3. Normal forms of Z-graded Q-manifolds;Journal of Geometry and Physics;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3